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Abstract— Viscoelastic constitutive equations of the differential type and of the rate type are applied
in the study of the mechanical response of rubberlike materials in a simple shearing deformation
superimposed on a specified static longitudinal stretch. Creep, recovery and stress relaxation pro-
cesses are formulated for a class of incompressible, isotropic viscoelastic quadratic materials.
Equations characterizing the creep and recovery processes for materials of differential type are
derived, and their exact solutions are obtained. For materials of the rate type, the stress relaxation
process is independent of the elastic material response functions. A coupled system of equations for
the creep and recovery processees in a material of rate type are presented ; these must be solved
numerically. The finite amplitude, damped, free vibration of a rigid body supported by incom-
pressible, viscoelastic quadratic simple shear mountings of the differential type is investigated. The
motion of the body is governed by a damped Duffing equation whose solution is discussed by the
averaging method.

1. INTRODUCTION

Creep, recovery and stress relaxation phenomena are commonly encountered in engineering
applications that use elastomers or soft polymers. Typical applications of these rubberlike
materials in mechanical systems include machine mountings, foundation springs and pack-
aging supports designed to absorb and to control vibration. In some instances, due to
impact or to a strong earthquake, for example, the system may experience large amplitude
oscillatory motions and internal material damping provides a natural vibration absorber
effect. To characterize effects of creep, recovery, stress relaxation and viscous damping in
the study of mechanical systems that employ elastomeric springs, general constitutive
equations for viscoelastic materials subjected to finite deformations must be introduced.
For mathematical studies, the constitutive equation should cover a broad class of real
materials, it should characterize the major nonlinear physical phenomena of interest, and
it should be easy to apply.

These attributes have been the focus of recent studies of physically sound and math-
ematically simple constitutive equations of the differential type [see e.g. Beatty and Zhou
(1991); Zhou (1991a)] and of the rate type [see e.g. Zhou (1991b)]. Beatty and Zhou
(1991) introduced a class of incompressible, viscohyperelastic materials of differential type,
a class of rubberlike materials that generalizes the Kelvin—Voigt solid of classical linear
viscoelasticity, to study the quasi-static response of a rubberlike material in a simple
shearing deformation superimposed on a given static homogeneous strain. The differential
model delivers simple analytical solutions for the creep and recovery processes for the
special class of viscoelastic Mooney—Rivlin materials. It also leads to a classical closed form
solution to the problem of the finite amplitude, damped, free vibrations of a simple shear
spring-mass system. The constitutive equation used by Beatty and Zhou (1991) is essentially
a combination of finite elasticity theory and linear viscous fluids theory. It describes the
uncoupled linear viscous response and nonlinear elastic response of an isotropic,
incompressible material. Zhou (1991a) extended this model to include a nonlinear power
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law viscous fluid effect and a nonlinear second order fluid contribution. For a simple
shearing deformation, the nonlinear models of differential type deliver exact solutions for
creep and recovery processes. The two models studied by Zhou (1991a) include, as a special
case, the viscoelastic constitutive model introduced by Beatty and Zhou (1991), and they
generalize the Kelvin—Voigt solid and the three-parameter model of classical linear
viscoelasticity.

The differential type theory involves no stress rate, therefore, the stress relaxation
phenomenon was not addressed in these primary studies. To investigate this problem, Zhou
(1991b) introduced an incompressible, viscoelastic constitutive equation of the rate type.
This model includes the equation of differential type studied by Beatty and Zhou (1991), it
generalizes the standard linear solid of classical viscoelasticity theory, and it predicts creep,
recovery and stress relaxation effects. The stress relaxation process described by the rate
type model is characterized by a solution that is independent of the elastic material response
functions; it depends on a material retardation time constant only. Solutions for the simple
shearing deformation of a viscoelastic Mooney—Rivlin material and a simple extension of
a viscoelastic neo-Hookean material, both of the rate type, are provided. The analysis of
the creep and recovery phenomena in a simple shearing deformation, however, is incorrect.
These results will be reviewed and corrected below.

This paper is a continuation of work by Beatty and Zhou (1991) and Zhou (1991b).
The incompressible, viscoelastic Mooney—Rivlin model introduced in these works is char-
acterized by a constant shear response function. In consequence, the model extends classical
exact solutions to creep, recovery and stress relaxation processes to a special class of
nonlinear, viscohyperelastic materials. In the present study, however, the creep, recovery
and stress relaxation processes are examined for a class of incompressible, isotropic
viscohyperelastic quadratic materials in simple shear. Here we examine the effects of
nonlinearity of the shear response functions of an incompressible, viscohyperelastic material
whose elastic strain energy is a general quadratic function of the principal invariants of the
left Cauchy—Green deformation tensor. The Mooney-Rivlin model is included as a special
limit case for which the nonlinearity vanishes.

Constitutive equations for incompressible, isotropic viscoelastic materials of the
differential and rate types are reviewed in Section 2, and the response functions for the class
of quadratic materials are introduced there. A simple shearing deformation superimposed
on a finite, static uniaxial deformation is considered in Section 3. Exact solutions are
presented for the creep shearing and recovery of a viscoelastic quadratic material of differ-
ential type. It is seen that the nonlinearity increases the creep rate so that the material more
quickly approaches its ultimate equilibrium shear state under a constant applied shear load.
In recovery, however, when the shearing load is removed, the nonlinearity has only a slight
effect on the recovery rate for a quadratic material of differential type. The stress relaxation
process is studied for a quadratic material of the rate type. It is found that the process is
characterized by an essentially universal solution, as shown by Zhou (1991b); only the
material retardation time constant appears in the solution. A coupled system of equations
for the creep shearing and recovery of general incompressible, viscoelastic materials of the
rate type are derived. These equations may be studied numerically, but we do not pursue
this here. Finally the problem of the finite amplitude, damped, free vibrations of a load
supported by simple shear mountings is studied in Section 4 for the class of viscoelastic
quadratic materials of differential type. The motion of the load is governed by a damped
Duffing equation whose approximate solution is obtained by the averaging method.

2. CONSTITUTIVE EQUATIONS OF THE DIFFERENTIAL AND RATE TYPES

A constitutive equation for an incompressible, isotropic, nonlinear viscoelastic solid
of differential type was introduced by Beatty and Zhou (1991) in their study of the quasi-
static mechanical response of rubberlike materials in simple shear. This equation is given
by
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= —pl+p,B+p_ B~ ' +21D, ¢))

where T is the Cauchy stress tensor, p is an undetermined pressure due to the incom-
pressibility constraint, #, and f_,, the elastic response functions of the material, are
functions of the principal invariants I; and I, of the left Cauchy—Green deformation tensor
B, # = 0 denotes the constant material viscosity, and D = %(L+LT) is the stretching tensor.
In the last expression L denotes the spatial velocity gradient tensor. The material is isotropic
relative to its natural undeformed state %, and all deformations are taken relative to y.
Equation (1) is a composition of the constitutive equation for an incompressible nonlinear
elastic solid and the constitutive equation for an incompressible linear viscous (Newtonian)
fluid, and hence describes the uncoupled linear viscous response and the nonlinear elastic
response of an isotropic, incompressible material. It is shown by Beatty and Zhou (1991)
that this equation generalizes the Kelvin—Voigt solid of classical linear viscoelasticity.

A constitutive equation for an incompressible, isotropic, nonlinear viscoelastic solid
of the rate type was introduced by Zhou (1991b) in the study of creep, recovery and stress
relaxation processes in both simple shear and simple extension. This equation is given by

= —p1+p,B+f_ B~ +29D—{(T+LTT+TL), )

where & is a certain positive material time constant and a superimposed dot denotes the
material time derivative. It is evident that the rate type material (2) reduces to the differential
type material (1) when £ — 0. As before, the material is isotropic relative to its undeformed
state ¥, and all deformations are considered relative to y. It is shown by Zhou (1991b) that
eqn (2) generalizes the standard linear solid model of classical linear viscoelasticity theory.

The elastic response functions §, and f_; for an incompressible hyperelastic material
[see e.g. Beatty (1987)] are defined by

[2)> 0z

B =ZE’ ﬂ-1=—25]—2, (3)

in which the strain energy density X is a function of the principal invariants 7, and I, of B.
In this work, we consider a class of incompressible quadratic materials [see e.g. Beatty
(1984)] for which the strain energy is given by

L=Ci(), =3)+Co(l,—3)+Cs(I; =3)* + C4(I, ~3)*+ Cs(I, = 3)(1, - 3), (€]

in which C;, k = 1...5, are material constants. In particular, when C; = C, = C; = 0, the
material is a Mooney—Rivlin material, and when C, = 0 as well, the material is neo-Hookean.
Thus, the response functions (3) for an incompressible, quadratic, hyperelastic material (4)
are provided by

B, =2C,+4C,(I; —3)+2C;(I,—-3)
ﬂ—l = —2C,—4C,(I; -3)—2Cs(1, - 3). (5)

A material characterized by eqns (1) or (2), respectively, in which the response func-
tions are defined by eqn (5), is called a viscoelastic quadratic material of differential type
or rate type. It is shown by Zhou (1991b) that the stress relaxation process for a material
of the rate type is described by a universal solution regardless of the response functions in
eqn (2). Hence, this universal solution is also valid for a quadratic material having the
specific response functions (5). The universal solution will be reviewed later. We shall begin
our study with a brief description of a simple shear support system and the principal
invariants characteristic of a simple shear deformation superimposed on a static uniaxial
stretch. We then describe the creep and recovery processes for the two types of viscoelastic
quadratic materials introduced above.
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3. CREEP AND RECOVERY OF VISCOELASTIC QUADRATIC MATERIALS IN SIMPLE
SHEAR

In view of its mathematical simplicity and wide use in engineering applications, the
simple shear deformation has received broad attention in the study of both mechanical
design and vibration problems [see e.g. Beatty (1984), (1988), (1989) ; Beatty and Bhatta-
charyya (1989) ; Bhattacharyya (1989) ; Beatty and Zhou (1991)]. It was also used recently
in the analysis of creep and recovery processes for viscohyperelastic materials of the
differential and rate types [see e.g. Beatty and Zhou (1991) ; Zhou (1991a, b)]. Beatty and
Zhou (1991) deal with a simple shear superimposed on a triaxial stretch, while Zhou
(19914, b) examines a simple shear superimposed on a simple longitudinal stretch. Here we
follow the latter model and consider a rigid load of mass M on a smooth inclined surface
making an angle 6 with the horizonal plane and supported symmetrically between identical,
prestretched rubber springs of undeformed length L and uniform cross-sectional area A.
The springs, prestretched an amount 4, are bonded to the load at one end and to rigid end
supports at the other, as shown in Fig. 1. We suppose that each rubber spring executes an
ideal, time-dependent simple shear deformation of amount K(¢) = tan y(f) superimposed
on the static longitudinal stretch 4. Clearly, the simple shear shown in Fig. 1 is an ideal
deformation in which y(¢) denotes the angle of shear, and bending of the springs is ignored.
The principal invariants of B for the simple shear deformation relative to the natural,
undeformed state, as shown by Beatty and Zhou (1991), are given by

L(B) = 22(1+K>)+247", L(B)=AQR+K)+4i7% L(B) =1. 6)
The two incompressible viscoelastic models characterized by eqns (1) and (2) will be used
in the analysis of the simple shear deformation. The creep and recovery processes are
considered next for each material model in turn.
3.1. Creep and recovery of a material of differential type in simple shear
For the viscoelastic material of differential type (1), it was shown by Beatty and Zhou

(1991) that the Cauchy shear stress 7, exerted on the mountings at the load interface, as
illustrated in Fig. 1, is determined by

Tl 2 = AsKﬂ(KZ ’ j's) + ﬂK, (7)
in which
AK?54) = A8 — B (®)

defines the elastic shear response function for the material. Equation (7) shows that the

4

Fig. 1. A rigid body M supported symmetrically between identical prestretched viscoelastic rubber
shear springs.
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shear stress is a function of both the amount of shear K and its time rate of change K, 2
relation typical of a classical Kelvin—Voigt material.

It is useful to recall the empirical inequalities for the elastic response functions [see e.g.
Beatty (1987)], namely,

>0, B, <0 &)

We require that these hold for all deformations of our materials. In consequence, for all
values of Ke (— o0, c0) and for each fixed stretch 4 e (0, c0), we see from eqn (8) that

AK?;4) > 0. (10

When 4, = 1, we write

AK? ;1) = p(K*) with  u(0) = po, (n

where pu, is the usual elastic shear modulus of the natural, undeformed state.

The creep process in a simple shear deformation is characterized by the growth of K(?)
under a constant applied engineering stress, for example, S, . In this case, the corresponding
Cauchy stress component T, = A,S,, is also constant, and in the ultimate static equilibrium
configuration of the system, shown in Fig. 1, we have 245, = Myg,, where g, = g sin 6. It
is natural to expect that if the load is released from rest when K = 0, the shear will increase
asymptotically to the ultimate equilibrium state defined by K(f) - 0 and K(f) > K, as t >

oo. Hence, the ultimate static equilibrium shear deflection X is related to T, through

Ty2 = AKA(K2;A,) = ALK, — B ), (12)

where §, and E _ are functions of A, and K, alone, and hence these are constants. We also
recall that the recovery phenomenon is a decay process marked by a decreasing amount of
shear K(¢) from an initially deformed state following a sudden reduction in the applied
shearing force. In particular, if the process begins from the ultimate static state determined
by eqn (12) and the load is reduced to zero, we expect that the shearing recovery K(¥) will
decrease asymptotically from K, to zero. Since creep is an irreversible process in which
energy is dissipated, this ideal recovery effect may never actually happen in a real material.
Creep and recovery, however, usually are fairly slow motions and the material of differential
type in eqn (1) behaves in static problems like an elastic material. Hence, when the load is
reduced to zero, the material returns to its former state which is, in this example, its
longitudinally prestretched state.

The governing equations for creep and recovery can be obtained from eqn (7). We
find for creep

nK = T1, —AKA(K?; A;), (13)
and for recovery
nK = —AKi(K?; A). (14)
For a viscoelastic quadratic material, it may be shown from eqns (5), (6) and (8) that
MK ;4) = go+q: K7, (15)

where g, and ¢, are material constants given by

SAS 31:23-C
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go = 2(A4,Cy + Co) + (44,C3 +2Cs)(AF + 24,1 =3) + (4C, +24,C5)(A7 2 +24,—3) (16)
g1 = (44,C; +2Cs)A7 + (4C4 +24,C5) A, (amn
In view of eqn (10), it follows from eqn (15) that for all A, > 0 and all Ke (— w0, o),
go = f(0;4)>0 and ¢, >0. (18)
Moreover, it is seen from eqn (15) that
AK? ;1) = o+ 2, K2, (19)
in which

Mo = lim gy =2(C, +C;) >0 and 2y, = }‘1_1}} g =4C3+C+C5) 20. (20

3.1.1. Creep shearing of a quadratic material of differential type. Returning to the creep
shearing relation (13) for a viscoelastic quadratic material of differential type in a simple
shear superimposed on a static uniaxial stretch, we introduce eqns (12) and (15) to obtain
the shear deflection rate, called the creep rate (or creep speed), namely,

K= %((KS—K)-i-ﬁ(KS -k = Ks: Rivpc + kx50, @n
where
=1 =_"T
ﬁ—qo’ PR @2)

The material ratio f is a measure of the nonlinearity of the material, and 1, is recognized as
the retardation time, a common physical parameter that measures the effect of the speed of
the creep and recovery processes. It is seen from eqn (18) that # > 0 and ¢, > 0, as may be
expected. When C;, C, and C; vanish, from eqn (17), we have g, = 0 and f = 0. In this
case our viscohyperelastic quadratic material (4) reduces to the viscoelastic Mooney-Rivlin
model. The strength of the material nonlinearity increases with §.

Integration of eqn (21) from the initial horizontal configuration of the shear mountings
where K(0) = 0 yields the travel time of the load M during the creep process. We thus find

I (Ks,/ﬂKz +BKK+1+ ﬁxz)

1 (K,—K)/1+BK?
f - . 23)

I43BKC) 3K, (ﬂK 4ﬁ+3ﬁ21<3)
JA4B+36°K? K.K+2+28K;

The exact solution of eqn (21) for the viscoelastic Mooney-Rivlin model for which § = 0,

is given by the classical rule
t
K- Ks[l —exp (- 7)] @4

a result which also follows easily from eqn (23). This solution, as remarked by Beatty
and Zhou (1991), is a universal solution which is independent of the material constants.
Accordingly, any two viscoelastic Mooney-Rivlin materials having the same retardation
time will exhibit the same creep response ratio K/K.
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Fig. 2. Creep shearing response of a viscoelastic quadratic material of differential type in simple
shear for selected values of the ultimate static shear deflection K, and the elastic material
parameter B.

The creep shearing deflection K(7), described by eqn (23), is illustrated in Fig. 2 for
two finite, ultimate equilibrium shear deflections K, = 0.5 and K, =1 of a viscoelastic
quadratic material for which § = 0.5. The creep shearing deflection begins at K = 0 and
approaches the ultimate static equilibrium position K as K — 0 with ¢ — 0, as anticipated.
The corresponding solutions (24) for the Mooney—Rivlin model for which § = 0 are also
shown in Fig. 2. It is seen that the creep rate (21), as shown by the increasing slope of the
response curves in Fig. 2, increases with increasing values of §. This is also evident from
the creep response ratio X/K at t = ¢,. This ratio for a few values of # and K is given in
Table 1.

Thus, when § = 0.5 and K| = 0.5, for example, 70.0% of the creep process has been
completed by the retardation time ¢ = ¢, ; and this grows to 85.5% when K| = 1, as shown
in Fig. 2. Equation (24) yields the universal creep response ratio of 63.2% for all Mooney—
Rivlin materials in simple shear, as reported by Beatty and Zhou (1991).

The retardation time for the class of viscoelastic Mooney—Rivlin materials is derived
by Beatty and Zhou (1991). The same result, however, may be obtained easily from eqn
(22) for the class of viscoelastic quadratic materials in the special case when
C; = C4; = Cs = 0. Thus, upon introducing a = C,/C,, we see from eqns (16) and (20),
that for the Mooney—Rivlin model

=ﬂo(/1s+°‘)
° 14+a

Ho
14+«

il

» 2C1 = 1+a.

> 2C2 =

(25
In consequence, from eqn (22),, the retardation time for a viscoelastic Mooney-Rivlin

Table 1. Creep response ratio K/K; at the retardation time, for
selected values of § and X,

K,=025 K =050 K=075 K-=1

=0 63.2% 63.2% 63.2% 63.2%
B=025 64.1% 66.7% 70.8% 76.0%
=050 65.0% 70.0% 77.4% 85.5%
f=075 65.8% 73.1% 82.9% 91.9%
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material in a simple shear superimposed on an uniaxial stretch, as shown by Beatty and
Zhou (1991), is given by

__nd+a)
b= ko at ) (26)

Results for the neo-Hookean material are obtained for a = 0.

3.1.2. Shearing recovery for a quadratic material of differential type. The shearing
recovery process for a general isotropic, viscoelastic material of differential type whose
current configuration is an ultimate static simple shear of amount K, superimposed on an
uniaxial stretch is governed by eqn (14). We thus suppose that the shearing recovery begins
from an initial static state K, when the applied external shearing load is suddenly removed.
In particular, for a quadratic material of differential type, use of eqns (15) and (22) in eqn
(14) yields the shearing recovery rate or speed

K= —f—((1+ﬂ1<2). @7)

Thus, the recovery speed decreases from its initial value at K(0) = K, and ultimately vanishes
when K = 0 as ¢ — 0. The solution of eqn (27) is given by

K,exp (—t/t,)

A= TR —exp (—20)) =

This solution completely describes the recovery process and also demonstrates the
nonlinear effect of f. The shear recovery in eqn (28) is a decreasing function of ¢/r..
Moreover, increasing the shear stiffness f in eqn (28) decreases the recovery value of K at
a fixed value t/¢, and, as seen in eqn (27), thus speeds the recovery process. The effect on
the recovery speed due to f§, however, is small compared with its effect on the creep
speed. This is illustrated in Fig. 3 for K, = 1 and 0.5, which may be compared with the
corresponding cases for creep in Fig. 2. It is seen in Fig. 3 that the effect of f on the recovery
response diminishes as the amount of static shear K, decreases. Indeed, for small K; in
eqn (28), we have K = K, exp (—1/t,), very nearly, and hence for small K|, the material
nonlinearity f has essentially no effect on the shearing recovery. The recovery response
ratio (K;— K)/K; for ¢t = t, is given in Table 2 for a few values of § and K.

Thus, when = 0.5 and K, = 0.5, for example, 65.1% of the recovery process has been
completed by the retardation time ¢ = ¢,. This value, however, does not differ significantly
from the universal recovery response ratio of 63.2% for a Mooney-Rivlin material for
which § = 0. Although neither the creep solution (23) nor the recovery solution (28) exhibit
explicit dependence on the uniaxial initial stretch A, notice that the static stretch affects the
solution indirectly through eqn (22). Both f and ¢, are functions of A, through ¢, and ¢,
given by eqns (16) and (17).

This concludes our study of the creep and recovery processes for a viscoelastic quadratic
material of differential type (1). The same processes for a quadratic material of the rate
type are explored next.

3.2. Stress relaxation, creep and recovery of materials of rate type

It is shown by Zhou (1991b) that the stress relaxation process for a general viscoelastic
material of the rate type is characterized by the solution

T =T+[T,—Tlexp (~1/¢) (29)

for all Cauchy stress tensors T. We recall that £ is the positive material time constant in
eqn (2) ; otherwise, eqn (29) is independent of both the deformation parameters and the



Simple shearing of an incompressible, viscoelastic quadratic material 3209

1 ™

Shearing Recovery Deflection, K(t)

T T =
4

Time Ratio, t/tr

Fig. 3. Shearing recovery response of a viscoelastic quadratic material in simple shear for selected
values of the initial static shear deflection K, and the elastic material parameter §.

elastic response functions, and in this sense may be regarded as universal [see e.g. Zhou
(1991b)]. Thus, eqn (29) describes a universal stress relaxation process that begins from a
certain initial stress T, and relaxes exponentially to the ultimate equilibrium state on which
the static stress T is determined by the elastic part of eqn (2) :

T=—-p1+fB+p_B ", (30)

where a circumflex denotes values at the ultimate equilibrium state. Implicit in the derivation
of eqn (29) is the condition that the arbitrary pressure in eqn (2) is chosen so that
p(x, 1) = p(£) for all time in the stress relaxation process. For the system shown in Fig. 1,
the only non-trivial, initial stress component is the uniaxial stress component

1
T2, = ()»s— ;)ﬁo(ls)a €))

where fi,(4,) = [i(0; 4,) and we recall eqn (8).

Table 2. Recovery response ratio (K, —~ K)/K, at the retardation
time, for selected values of g and K,

K, =025 K=050 K =075 K-=1

=0 63.2% 63.2% 63.2% 63.2%
p=025 63.5% 64.2% 65.3% 66.6%
B=10.50 63.7% 65.1% 67.0% 69.3%
B =075 63.9% 65.9% 68.5% 71.3%
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It is seen in eqn (29) that the material time constant ¢ is the retardation time:
L=, (32)
which is the material time required for the stress to relax from its initial value T, to 63.2%

of its ultimate equilibrium value T. That is, by eqn (29), in evident physical component
notation at ¢ = ¢,,

TS 7,0,
—’——’;(—) =1-e"! %0632 (33)
151,

Therefore, 63.2% of the total stress relaxation process is accomplished in time ¢,. Clearly,
if & is small, for example, this occurs in a short time, hence the material time constant is a
measure of the stress relaxation speed. Although it takes an infinitely long time to reach
the ultimate equilibrium state, the great portion of the process is accomplished in the
relatively short time (32). The universal constant (33) was noted by Zhou (1991b) and is
characteristic of the stress relaxation process of all viscoelastic materials of rate type (2).
Hence, it holds specifically for all quadratic materials of the rate type.

For the shear suspension system in Fig. 1, it is shown by Zhou (1991b) that the Cauchy
normal and shear stress components in a simple shearing deformation of a viscoelastic
material of the rate type (2) are related by

6T1|+T11 =ﬁ1K2j-: (34)
ET1y+ Ty = ALKMK? ;4)+ K(n—ETy,) (35)
éT22+T22 = (As—'ls-z)li(K2 ;ls)+ﬂ—1AsK2—2éK‘T12- (36)

The latter results require that the plane of shear shall be traction free so that
T33(t) = T13(t) = T»5(t) = 0. These are a coupled system of ordinary differential equations
for which we can offer no general solution. Nevertheless, it is useful to record formulae for
specific processes to correct previous errors in Zhou (1991b).

3.2.1. Creep shearing in a viscoelastic material of rate type. The creep process is
characterized by the growth of K(7) under a constant applied shear stress T, = T',, say.
When the stress is produced by the effective weight of the load, T, is provided by the
equilibrium equation 247,,/4; = Mg,. The remaining stress components, however, must
vary with the amount of shear K(¢), and hence with time z. In any event, T,,(¢) is balanced
by the symmetry of the supports of the spring-mass system shown in Fig. 1, and T,(¢)
must be known in order to determine the amount of shear K(¢) from eqn (35). If the load
is released when K = 0, the shear will increase asymptotically to an ultimate equilibrium
state defined by K(f) = 0 and K(z) — K, as ¢t - o0. Hence, from eqns (34), (35), (36) and
upon recalling eqn (12), we find that the ultimate static stress components T, Ty, and T,
are related to the equilibrium shear deflection K| through

Tn = fflez'ls2
TIZ = 'L}I<s,2(1(s2 ’As)
Taz = (b= A7 )A(KE 3 4) + B_ | KA, (37

and from eqns (34), (35) and (36), we thus obtain the governing equations for the creep
process in a viscoelastic material of the rate type:
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(T + T = BKPA;
T2+ Tay = (A — AT DAK? ;5 A)+ B, AK? ~2EKT (38)

R(n—¢Th) = TioAKK? ; 4). (39

3.2.2. Shearing recovery in a viscoelastic material of rate type. We recall that the
recovery phenomenon is a decay process marked by decreasing shear K(f) from an initially
deformed state following a sudden reduction in the applied shearing force. In particular, if
the process begins from the static state determined by eqn (37), when the applied shearing
load is reduced to zero so that T,,(¢) = 0, the recovery shear K(¢) must decrease asymp-
totically from K, to zero. The governing equations for recovery are obtained from eqns
(34), (35) and (36). We thus find for recovery in a simple shearing of a viscoelastic material
of the rate type,

ET + T, = B KA
ETy +Tay = (A, — A5 DA(K? 5 A)+B_1AK? (40)

K(n—LTy) = —AKAUK? 5 4). @n

The recovery equation (41) in a simple shear of rate type material, contrary to the assertion
by Zhou (1991b), is not the same as the corresponding relation (14) for a material of the
differential type. Indeed, it is evident from the foregoing equations for the creep and
recovery processes that a simple shearing of a material of rate type exhibits no useful
simplifications for even the simplest neo-Hookean model for which #, = pg, f_; = 0. The
unfortunate error in Zhou (1991b) derives from the improper assumption that 7, may be
constant. In consequence, the results for the simple shear deformation presented by Zhou
(1991b) for materials of rate type are incorrect. The best we may expect is that the foregoing
equations may be studied numerically, but we shall not pursue this here.

3.2.3. Concluding remarks on stress relaxation in a viscoelastic material of rate type.
Returning briefly to the stress relaxation relation (33), we see that at the retardation instant
the nonzero stress components in a simple shear superimposed on an uniaxial stretch are
given by

T (t) = 0.632T,,, Ti,(t) =0.632T,,, T3, — T, =0.632(T%, —T1y). (42)

Here we recall eqn (31), the only nonzero initial stress component, and eqn (37). These are
valid for all viscoelastic materials of the rate type.

This concludes our study of the stress relaxation, creep and recovery processes for a
viscoelastic material of rate type in simple shear. In the next section we investigate the effect
of viscous damping in the free oscillatory motion of a body supported by simple shear
mountings shown in Fig. 1.

4. FINITE AMPLITUDE, FREE, DAMPED VIBRATIONS OF A SIMPLE SHEARING
OSCILLATOR

Shear mountings of various designs are used in a variety of engineering applications,
including vehicular suspension supports, machine and building foundation springs, and
packaging supports. Of course, the physical nature of the vibrational motion of a load
supported by shear mountings in any sort of application depends on their material charac-
teristics. The mechanical behavior of a system with linear shear response, both with and
without damping, certainly is well known. In addition, the problem of the free, undamped
vibration of a body supported by simple shear springs characterized by a quadratic shear
response function for a general compressible or incompressible, isotropic, hyperelastic
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material has been investigated by Beatty (1984). The more general undamped, finite ampli-
tude, periodic motion of a rigid body supported by homogeneous, simple shear mountings
of arbitrary design and material subsequently was addressed by Beatty (1988). In the
latter case, a simple monotonicity condition on the shear response function sufficient for
periodicity, and hence stability of the motion for arbitrary initial conditions, is provided.
This general analysis for an arbitrary isotropic elastic material was applied by Beatty (1989)
to study the stability of the motion of a body supported by a simple vehicular shear
suspension system. Special cases were examined later by Beatty and Bhattacharyya (1989)
and Bhattacharyya (1989) for the free and forced vibrational motion of a load supported
by a quadratic material model. Viscoelastic effects, however, are not included in any of
these studies. To examine the effect of damping in vibrational problems, Beatty and Zhou
(1991) introduced the viscoelastic material of differential type (1) ; they applied this model
to study the finite amplitude vibrations of a body supported by viscoelastic Mooney—Rivlin
shear springs. The exact solution is given in terms of exponential and sinusoidal functions.
In this section, the problem described earlier in Fig. 1 is studied for an incompressible,
viscoelastic quadratic material of differential type. It will be shown that the motion of the
body is governed by a damped Duffing equation. The averaging method is used to obtain
an approximate solution for the free, damped oscillatory motion of the load.

To begin, we recall the engineering stress tensor S = TF~T for an incompressible
material [see e.g. Beatty (1987)]; then the engineering shear stress S, = T,/4;. As usual,
we shall ignore the inertia of the shear springs. We shall also neglect bending of the mounts
and thus suppose, of course, that appropriate surface tractions are applied to the shear
mountings to effect their ideal simple shearing. Then, with Fig. 1 in mind, the acceleration
of the center of mass of the load is X = LA K, in which K(¢) = tan y(¢) as noted earlier,
Hence the equation of motion of the load M is

MLlssz Mgo—'zASlz. (43)

With the aid of eqns (7), (15) and the aforementioned relation for the shear stress com-
ponent, the equation of motion of the load for the viscoelastic spring-mass system of
differential type becomes

R+ 29K+ w*(K+BK?) = pi, (44)
in which
24q, 24n go gsinf
2 = T e 2 2 = -
=MLy 2= mrz ? b =TSN @5

$

and B and ¢, are defined in eqn (22). It is seen that when the quadratic material parameter
B — 0, eqn (44) reduces to eqn (40) in Beatty and Zhou (1991) for a viscoelastic Mooney—
Rivlin oscillator for which the exact solution of the damped oscillation is well known.
Otherwise, we recognize eqn (44) as a damped Duffing equation whose closed form solution
is unknown. Therefore, we shall seek an approximate solution.

We first introduce the amount of shear relative to the equilibrium state, namely,

k= KK, (46)
in which the static shear deflection K, from eqn (44), is given by

s _Pb _Mgsinb
K.+ BK; = T T24q, 47

Thus, with the aid of eqns (46) and (47), the equation of motion (44) may be written in the
form
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R+2vk+0?[k+ BBKIx+3K x> +x°)] = 0. (48)

This equation describes the finite amplitude, free vibrations of the load about the equi-
librium state of a viscoelastic quadratic oscillator of differential type. Its exact solution is
unknown. We are thus led to explore an approximate analysis, commonly known as the
averaging method, to study the nature of the solution of eqn (48).

Following Hagedorn (1978) and originally Kryloff and Bogoliuboff (1947), we first
rewrite eqn (48) in the form

R+ o’k = sk, k), (49)
with
sk, k) = =2k —w*BBK k+3K .k’ +°). (50)
The solution of eqn (49) for the case s(x, k) = 0 is given by
K = Agsin(wt+y) hence Kk = wA,cos{(wt+y,), 51

in which both the amplitude 4, and the initial phase yr, are constants determined by the
initial data. We now consider the nonlinear equation (49) in which s(x, k) # 0. In accord-
ance with the averaging method [see e.g. Hagedorn (1978) ; Kryloff and Bogoliuboff (1947)],
Ao and ¥, in eqn (51) are replaced by functions A(f) and ¥(¢), respectively. We then
consider a solution of the form similar to eqn (51) so that

k() = A@) sin [t +y(D)] (52)
and

k() = wA(t) cos[wt+ (D). (53)
Hence, differentiation of eqn (52) shows that eqn (53) holds if and only if
Asiny, +yAcosy, =0, (54)
in which
Vi () = ot+y (). (55)

Use of eqns (52), (53) and (55) in eqn (49) yields the additional relation

; . 1
A cos i, — A sin ¥, =;D-s(A sin ¥, wA4 cos ¥,). (56)

Thus, eqns (54) and (56) deliver the following equations for 4 and l// :

.=$S(A sin Y, w4 cos ;) cos ¥, (57

v = _-a-)l;s(A sin 1, @A cos y,) sin ;. (58)

We now assume that the function s(x, k) is sufficiently small that both the amplitude
and phase change only slowly. We can then simplify the differential equations (57) and (58)
by replacing the right-hand side of these equations by their temporal mean values identified
in the variable ¥, over the interval [0, 2z}, that is, in the period 2z/w. In forming this mean
value, A and ¢ are held constant in the right-hand sides of eqns (57) and (58). Hence, we
have
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A =§%£E [%S(A sin ¥, wA cos ) cos t,{/l]dl//l (59)
- .L 27 [0 ] A si 4 . q .
Y= ~ 5 L [-aas( sin ¥/, A cos i) sin z//,] . (60)

The result is an autonomous system of equations that yields a first approximation to the
time dependence of the amplitude and phase. Substitution of eqn (50) into eqns (59) and
(60) and integration of the results delivers the following equations for 4 and ¥ :

{ = —vA (61)
¥ = 3%5(41(3 +42). (62)
Finally, integration of these equations gives
A= Adge™ (63)
Y =yo+ 3—(;’15 (4K3t~ ;—E e*2">. (64)

Hence, by eqns (46), (52}, (63) and (64), the approximate solution to eqn (49), and hence
to eqn (44), for finite amplitude, free, damped shearing oscillations of the load is given by

3wpA3

K=K+ A4, e "sin [mt(l+%ﬁK§)— 16

e*z"'+¢1/0]. (65)

Thus, with K(0) = K+ 4,, we have

and hence

3wfA3
K= K,+4ge" cos [ma +3px+ 2204 ~e-2")], (66)

The solution (66}, also illustrated in Fig. 4 for selected values of the several parameters,
is a damped oscillatory motion whose amplitude 4, decays exponentially. It is seen in eqn
(66) that the frequency response depends on the amplitude, a characteristic typical of
nonlinear motion. The effect of variation in the damping coefficient v is shown in Fig. 4(a)
and the effect of variation of the natural circular frequency w is shown in Fig. 4(b). Fora
horizontal motion, the equilibrium equation (47) requires K| = 0, and hence eqn (66)
simplifies to

3wpA3

— —v?
K=A,e cos[mt+ 16v

(1 —e“z"’)]. 67)

When f - 0, eqns (66) and (67) reduce to the classical solutions obtained previously by
Beatty and Zhou (1991) for the Mooney—Rivlin oscillator.
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Fig. 4. Shearing deflection ratio as a function of time, for {a) two values of the damping coefficient
and fixed parameter values and (b) two values of the circular frequency and assigned parameter
values.
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